
Experimental Big Data Processing Pipeline Design
for 5G Mobile Networks

Muhammad Sulaiman
David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

m4sulaim@uwaterloo.ca

Abstract—The modern world generates vast amounts of data
on a daily basis, making it increasingly difficult for single
machine-based setups to effectively process and store it. To
address this issue, many organizations are turning to clustered
setups, which leverage distributed data storage and processing to
handle large-scale data. Large-scale data manipulation imposes
different types of requirements based on the type of analysis
being performed. For instance, training machine learning models
from historical data may require a different approach than
visualizing streaming data in real-time. On the other hand, for
some applications, the sensitive nature of data requires that
it stays on-premise i.e., it cannot be stored in the cloud. The
monitoring and management 5G network is one such application
dealing with big data where strong guarantees about its safety are
required. In this project, I describe the design, implementation,
and testing of an experimental big-data pipeline for Rogers on the
CN Cluster at Davis Centre (DC) at the University of Waterloo.

Index Terms—5G, C-RAN, Network Slicing, Admission Con-
trol, Multi-agent Reinforcement Learning

I. INTRODUCTION

Modern mobile networks serve a wide variety of appli-
cations such as low-latency remote control of autonomous
vehicles and high throughput such as 4K video streaming.
However, traditional mobile networks use a monolithic in-
frastructure to serve all these diverse applications, leading
to inefficient resource utilization and a diminished quality
of experience (QoE) for the users. To address this issue,
Network Softwarization principles are being adopted, allowing
for programmable networks. In 5G networks, the infrastructure
provider can use network function virtualization and software-
defined networking to create virtual networks called ”slices”
that are isolated but hosted on a shared infrastructure. In-
telligent management and orchestration (MANO) of these
slices can improve resource utilization and QoE. Autonomous
management and orchestration of 5G slices is a significant
challenge in 5G networking. 5G networks can be complex and
difficult to model and manage. In my research, I have surveyed
the literature on autonomous 5G network management and
identified six key challenges that must be addressed for the
effective management of 5G slices. One of these challenges is
that of big data processing.

Different algorithms for 5G slice management may have
varying data requirements, such as processing online streaming
data or learning from offline historical data, and a standard-
ized and flexible way to interact with this data is needed.
Additionally, mobile networks generate large volumes of data

that can be in the terabytes, making it difficult to store and
process using traditional methods. To address this challenge, I
have developed a big data processing pipeline for 5G mobile
networks. The pipeline consists of four components: data
ingestion, data storage, data processing, and data visualization.
It has been implemented using open-source technologies such
as Kafka, Logstash, Elasticsearch, Hadoop HDFS, Spark, and
Kibana. The pipeline is currently being hosted on the CN
cluster in Davis Centre, and it is being used by my colleagues
at the Hardware Lab to deal with the data generated by our in-
lab 5G testbed. This pipeline allows for efficient and flexible
processing of large amounts of data, which is crucial for the
effective autonomous management of 5G network slices.

The remainder of this report is structured as follows:
In Section II, I provide an overview of 5G networks and
discuss the specific big data-related challenges that must be
addressed when designing a big data processing pipeline
for a 5G network. In Section III, I describe in detail the
open-source tools that we used to address these challenges.
In Section IV, I discuss the issues encountered during the
practical implementation and highlight the key learnings from
this process. In Section V, I validate the functioning of the
different components of the pipeline. Finally, after addressing
the critiques by fellow classmates in sections ??, I conclude
the report in section VI and discuss potential areas for future
work.

II. BIG DATA CHALLENGES IN 5G MOBILE NETWORKS

Fig. 1: System Control Loop [1]



As discussed in Section I, the virtualization of mobile
networks presents opportunities for intelligent network man-
agement and orchestration [2, 3, 4]. In [1], the authors propose
a closed-loop system that can be integrated with a 5G network
for this purpose. The system design is based on the MAPE
(monitor, analyze, plan, execute) control loop, as shown in
Fig. 1.

The monitor module is responsible for collecting data from
the substrate network and forwarding it to the analyze module,
which hosts the data processing pipeline. This pipeline is
responsible for ingesting the incoming data, storing and visu-
alizing it, and facilitating data analysis. Based on the raw data
received, the analyze module interacts with the data process-
ing pipeline to calculate relevant key performance indicators
(KPIs) and any additional metrics useful for visualization or
performance management decisions. The analyze module then
forwards the processed data to the plan module. The plan
module hosts intelligent algorithms such as intelligent 5G
slice orchestration and performance and fault management.
Based on the data received from the analyze module, these
algorithms produce output decisions, which are then forwarded
to the execute module. The execute module is responsible for
interacting with the network and applying these actions.

Fig. 2: 5G substrate network topology

In a 5G mobile network, incoming data from users must
be processed by multiple network functions (NFs) within a
Radio Access Network (RAN) and a core network (CN) before
it can be routed to the wider internet. These NFs must be
hosted on virtual servers, as they require compute resources
to operate. These NFs can be hosted on decentralized servers
located closer to users or on centralized servers, which can
benefit from multiplexing gains that reduce compute resource
demand.

In modern metropolitan networks, the substrate network
consists of the aforementioned servers and follows a ring-
and-spur topology, as shown in Fig. 2. In this topology,
decentralized sites host NFs that require low latency due
to proximity to users, while aggregation and core sites host
NFs with less stringent latency requirements. This structure
is replicated across the entire country, with centralized sites
located in large cities and decentralized sites located in sur-
rounding areas closer to users. Due to the complexities of

networking, each site has a significant number of components
that need to be monitored, which presents challenges for data
ingestion and storage. Since each component at these sites
generates data in real-time, a single link handling all the
incoming data can quickly become a bottleneck. For example,
if a single server is used to enqueue incoming data, the link
to that server becomes the bottleneck. Additionally, as the
number of data consumers increases, a single server may
not be able to serve all of them in a short amount of time.
Therefore, handling such cases requires a distributed data
ingestion system with multiple servers to enqueue arriving
data and prevent link bandwidth and server compute resource
bottlenecks. Furthermore, incoming data is often unstructured
and contains a significant amount of redundant information, so
the data ingestion solution should be able to parse and clean
the data.

Once the data has been ingested, it needs to be stored for
later access. As the size of this data increases, traditional
data storage become ineffective at storing this data. This is
because traditional methods for data storage utilizing hard disk
drives (HDDs) or solid-state drives (solid-state drives) can only
provide limited data storage and retrieval speeds. If the size
of the data is in terabytes, just storing and retrieving this data
can take days. Additionally, for commercial applications, the
data needs to be stored for a long period of time. however,
the traditional storage methods have a high failure rate. This
causes a high risk of data loss. Therefore, there is a need
for a data storage mechanism that can not only provide high
data storage and retrieval speeds but can is also fault tolerant.
To address these challenges, there are open-source solutions
available such as Hadoop distributed filesystem (HDFS). How-
ever, these solutions usually trade-off their data storage and
retrieval throughput with their data access latency. In other
words, even though they provide high input/output throughput,
the latency to search for a specific record within the database
can be quite high. This can be unsuitable for applications that
require low-latency access to the stored data. Therefore, in
addition to addressing the previously mentioned challenges,
the data storage solution for 5G networks must also provide
low-latency access to the relevant data.

Once the data has been ingested and stored, it needs to
be processed. Traditional data processing methods operate
on the data sequentially. This means that the computation
time grows linearly with the size of the data. In this case,
even simple operations on the data can take a significant
amount of time. For example, calculating the distribution of
a particular feature within the data requires iteration through
the entire dataset. Therefore, there is a need for a data-
processing solution that can leverage parallel processing in
order to minimize the computation time. For instance, in
the aforementioned example of calculating the distribution
for a given feature, multiple workers can be instantiated in
parallel and a divide-and-conquer strategy can be leveraged.
Additionally, heterogeneous algorithms constituting intelligent
management and orchestration of 5G networks can require
multiple complex calculations. Therefore, any solution used



for distributed data processing must be able to implement any
arbitrarily complex calculation that an algorithm may require.

To extract useful insights from the data analysis, it is
important to visualize it. Creating custom code for reading
the data, calculating relevant metrics in a given timescale, and
then creating a dashboard to visualize them in a presentable
fashion can be quite cumbersome and time-consuming. This
produces a need for a tool that can be integrated with the data
storage solution and can easily be used to create presentable
dashboards and visualize the data.

Finally, the data gathered from mobile networks can be quite
sensitive as it can contain information related to the end-users.
Therefore, it is important that it is stored in a highly secure
private cloud rather than in a public cloud. This constitutes the
final big-data-related challenge in 5G networks: on-premise
data storage.

In conclusion, the major challenges in the design of
big-data processing pipelines for 5G mobile networking
include:

• Distributed data ingestion
• Distributed, fault-tolerant data storage
• Distributed data processing
• Easy data visualization
• Data security

III. DATA PROCESSING PIPELINE DESIGN

Fig. 3 shows the software architecture of the proposed
data processing pipeline. This section details the design of
the different components of the data processing pipeline in
order to address each of the challenges mentioned in section II.

A. Data Ingestion

There are several options for data ingestion frameworks,
such as RabbitMQ, Apache Flume, and Apache Nifi. However,
as illustrated in Fig. 3, our data processing pipeline utilizes
Apache Kafka and Logstash for data ingestion.

Kafka is an ideal choice for our application due to its ability
to handle high volumes of data with low latency and its strong
durability guarantees. It is optimized for high throughput and
low latency, making it suitable for real-time data ingestion
scenarios. Additionally, Kafka has robust integration with a
variety of stream processing frameworks, making it easy to
incorporate into existing data pipelines.

At a high level, Kafka operates as a distributed, scalable
message broker. It is commonly used in many data processing
applications as a way to collect and distribute incoming data
[5, 6]. Kafka allows producers to publish data to one or more
topics, while consumers can read the published data from
these topics. However, behind the scenes, Kafka stores the
data across multiple nodes and supports data replication to
ensure that data is not lost if a node goes down. This makes
Kafka a powerful tool for building distributed, scalable, and
fault-tolerant data pipelines and streaming applications.

As mentioned in II, the arriving data is often unstructured
and contains a significant amount of redundant information.
Integrating Logstash with Kafka allows us to effectively
process and manage unstructured data that is often redundant.
Logstash reads data from Kafka topics, parses it, and
cleans it by removing redundancies and, enriches it with
any missing information. This ensures that the data is
structured and consistent before it is fed back into a new
Kafka topic for further processing. While Logstash may
not offer complex data manipulation capabilities, it is a
powerful tool for managing and transforming real-time data
streams in Kafka. Finally, we also utilize Logstash to move
the data from Kafka queues to the appropriate storage location.

B. Data Storage

Big data storage is a critical component of designing a
big data processing pipeline, as it determines how the data
will be stored and accessed. Traditional data storage methods,
such as relational databases, are not well-suited for storing
very large amounts of data due to their limited scalability and
performance. Therefore, specialized tools that are specifically
designed for storing and processing large amounts of data are
required.

One such tool is the Hadoop Distributed File System
(HDFS), which is a big data storage solution that is part of
the Hadoop ecosystem. HDFS is designed to store and manage
large amounts of data in a distributed manner, allowing it to
scale to very large data sets and support distributed processing.
HDFS stores data in the form of blocks, which are typically 64
MB or 128 MB in size. Storing data in blocks allows HDFS
to efficiently store large files, as it can divide the file into
blocks and store the blocks on different nodes in the cluster.
This also allows HDFS to improve the read throughput of the
data, as different blocks of data can be read in parallel from
different nodes in the cluster. Additionally, HDFS replicates
each block across multiple nodes in the cluster to provide
fault tolerance, ensuring that the data is always available and
can be accessed even if a node fails. However, there are also
some drawbacks to storing data in blocks. For example, small
files that are smaller than a block size must be padded with
unnecessary information to fill out a block, which can waste
storage space. Additionally, altering or deleting a small part of
a large file in HDFS typically requires reading the entire block,
modifying the part, and writing the entire block back to the
cluster, which can be time-consuming and resource-intensive.
This is because the entire block containing the data must be
altered and synchronized across the nodes in the cluster.

On the other hand, Elasticsearch is a big-data storage
framework that is optimized for fast data access and supports
storing and updating small files efficiently. Rather than storing
data in blocks like HDFS, Elasticsearch stores data in the
form of documents, which are self-contained units of data
that represent a single record or entity. Multiple documents
that belong together are stored in a collection called an index,
which is similar to a table in a traditional database. Due



Fig. 3: Data Processing Pipeline Architecture

to this data storage abstraction, Elasticsearch can quickly
retrieve and manipulate individual documents. It also makes
several optimizations and uses data structures such as an
inverted index to support fast search and retrieval of documents
based on their contents. However, these optimizations and
data structures come at the cost of lower storage efficiency
compared to some other storage solutions. In our preliminary
experiments, we observed that Elasticsearch may use as high
as six times the storage compared to the actual size of the data
for a time series.

As discussed previously, 5G networks can generate large
amounts of data and therefore have higher data storage re-
quirements than traditional big data applications. To meet these
requirements, it is important to use a data storage solution
that is highly efficient in terms of storage space usage. One
such solution is the Hadoop Distributed File System (HDFS),
which is designed to store and manage large amounts of data
in a distributed manner and can scale to very large data sets.
However, as mentioned earlier, HDFS has some drawbacks
related to data access and storage latency. These drawbacks
may not be suitable for some applications that require fast
data search and retrieval. In such cases, a different big data
storage tool may be needed. Elasticsearch is highly optimized
for fast data search and retrieval and is tightly integrated with
Logstash. As a result, it can be used as an alternative to
HDFS for data storage in situations where fast data search
and retrieval are required.

In our data processing pipeline, shown in Fig. 3, both
Elasticsearch and HDFS are used for data storage. The choice
of data storage framework is determined at Logstash, which
routes the data to the appropriate framework based on custom
logic based on the publisher or the contents of the data. This
allows the data processing pipeline to store historical data

efficiently, while also acting as a platform for heterogeneous
algorithms that may have different data storage and processing
requirements.

C. Data Processing

Once the data has been stored, it has to be processed.
The MapReduce programming model is a powerful tool for
processing large volumes of data in a parallel, distributed
manner. It is particularly well-suited for big data processing
tasks, where processing the data in a sequential manner can
take a significant amount of time. The MapReduce model
consists of two distinct stages: the Map stage and the Reduce
stage. In the Map stage, the input data is divided into smaller
chunks and processed in parallel by multiple workers, and
in the Reduce stage, the intermediate results are merged to
produce the final output. One of the key benefits of the
MapReduce model is that it leverages the distributed storage of
data to process the data in parallel across multiple nodes in the
cluster. This makes it possible to scale the processing of large
data sets by adding more workers to the cluster, which allows
us to process very large data sets in a reasonable amount of
time, even on relatively modest hardware.

For example, if we wanted to count the occurrence of
a specific word in a large corpus of text, we could use
the MapReduce model to process the data in parallel across
multiple workers. In the Map stage, each worker would map
each occurrence of the word to the value 1, and in the Reduce
stage, these values would be summed up to get the final count.

Building on the Map Reduce model, Apache Spark proposes
a new data abstraction called Resilient Distributed Datasets
(RDDs). An RDD is a fault-tolerant collection of objects
distributed across a cluster, which can be processed in par-
allel. Backed by the files present in the storage, an RDD



is created by performing operations on data. RDDs support
lazy execution i.e., even though the computations on the
objects can be defined in advance, processing only takes place
when the results are required. As a result, when an action
is called, Spark can analyze the entire computation graph
and create an efficient execution plan. For example, multiple
sequential filter operations can be executed in a single pass
over the data. Additionally, Spark allows for data sharing by
allowing frequently accessed data to be persistently stored in
the memory so that it does not need to be read again from
storage through slow I/O links. This can result in up to 100x
speed up in interactive queries, and iterative algorithms [7].
The last significant factor differentiating Spark from other
frameworks is its approach to fault tolerance. Traditional
frameworks secure the processed data by saving a checkpoint
in storage over slow I/O or network links. Spark, on the other
hand, only keeps the computation (lineage) graph used to
process the data and simply reruns it if the processed data
is lost.

Since Spark builds on the Map Reduce model, it can emulate
arbitrary computation on distributed data [7], but at the same
time, it includes the tools that help it avoid inheriting the
drawbacks traditionally associated with Map Reduce. Spark
provides a set of high-level libraries which save users from
the need to perform low-level programming while preserving
Spark’s state-of-the-art performance. The four main libraries
that come bundled with the base Apache Spark package are
Spark SQL, Spark Streaming, GraphX and MLlib. Spark SQL
allows users to manipulate RDDs abstracted as dataframes,
which are well-known to Python and SQL programmers. Spark
Streaming can be used to implement incremental stream pro-
cessing using a ”discretized streams” model. GraphX allows
for easy manipulation and storage of graph-based data. Finally,
as apparent by its name, MLlib provides a distributed imple-
mentation of the most common machine learning algorithms
and can be utilized to easily implement custom ones. Since
RDDs undergird all the functionality implemented in these
libraries, these can be combined for even higher gains in
performance in complex tasks. This makes Spark one of the
most utilized frameworks for batch and stream processing,
interactive queries, and scientific applications dealing with big
data.

Due to the aforementioned reasons, as shown in Fig. Fig. 3,
we integrate Spark with the HDFS in our data processing
pipeline.

D. Data Visualization

Data visualization is a powerful tool that can aid in the
development of clever algorithms, provides useful insights, and
enables real-time monitoring of the network. One tool that is
commonly used for big-data visualization is Kibana, which
is often used in conjunction with Elasticsearch. Kibana offers
an easy-to-use interface for creating dashboards and various
types of data visualization graphs, even for those with little
experience in data visualization. Since Kibana provides robust
integration with Elasticsearch, it presents a nature to be used

Master Node

Storage Nodes

Compute Nodes

Fig. 4: Data Processing Pipeline Hardware Architecture

as our data visualization solution.

E. Hardware Stack

One of the challenges outlined in section I is the issue of
data security in mobile networks. Mobile networks often con-
tain sensitive data, which means that not only is it important to
secure access to this data, but it is also important to consider
where the data is stored. In certain regions, there are laws in
place that require individuals’ data to be stored within the same
geographical location, such as the General Data Protection
Regulation (GDPR) in Europe, which requires that users’ data
must be stored within the European Union. As a result, it
is necessary to implement the data processing pipeline on a
local cluster in order to ensure compliance with such laws and
ensure the security of the data.

For this purpose, we obtained a set of five nodes from the
Computer Science Computing Facility (CSCF) at the Davis
Centre at the University of Waterloo, which we refer to as
Node 1 through Node 5. Each of these nodes is equipped with
16GB of RAM, 8x Intel Xeon 3.30GHz cores, and nearly 1TB
of storage, and runs Ubuntu 16.04. In a typical setup, there are
usually multiple nodes that serve as compute nodes, storage
nodes, and ingestion nodes, with some nodes being shared for
different purposes. Additionally, there are typically at least two
master nodes, one serving as the primary and the other as a
backup. This topology is illustrated in Figure 4. However, due
to the limited number of nodes available, we to modified our
setup slightly to make the best use of the resources. We used
two nodes for storage, three nodes for compute, one node for
ingestion, and one node as the master node, with some nodes
serving multiple purposes. The software stack for each node
is listed in Table I.



Node# Applications

1

Hadoop Master
Kibana
Kafka
Elasticsearch Master
Spark Master

2 Elasticsearch Worker
Logstash

3
Elasticsearch Worker
HDFS Worker
Spark Worker

4 HDFS Worker
Spark Worker

5 Spark Worker

TABLE I: CN Cluster Nodes and Corresponding Applications

IV. ISSUES AND KEY LEARNINGS

During the implementation of the data processing pipeline,
we encountered several issues which proved non-trivial to be
addressed. Some of the significant ones are detailed below.
A. Framework Integration

Integrating different frameworks can be a complex and
challenging process, particularly when it comes to achieving
compatibility between the various tools and libraries involved.
One issue that we have encountered in our work is the
difficulties involved in integrating PySpark with Apache Spark,
as well as Spark’s integration with Elasticsearch. These in-
tegration challenges can be time-consuming and require a
significant amount of troubleshooting to resolve, as errors that
may arise during the integration process can be difficult to
debug.

One lesson we have learned from this experience is the
importance of carefully considering the specific version re-
quirements of the various frameworks and tools we use. For
instance, installing a specific version of Java or Scala may
restrict the version of Spark that can be used, which may
only be compatible with certain versions of HDFS. By taking
the time to carefully consider these version requirements
in advance, we can better ensure a smooth and successful
integration process.
B. Debugging

Debugging an end-to-end data processing pipeline can be
challenging due to the complexity of the various frameworks
involved. For instance, issues that arise when running a Spark
operation on distributed data stored in HDFS can have mul-
tiple potential causes, such as networking issues between the
nodes, problems with Spark’s configuration, or difficulties with
integration with HDFS. While there are resources available
online to help troubleshoot these issues, we have found that
they can be heavily dependent on the specific versions of
the frameworks being used. This can make debugging more
difficult, especially if the frameworks are not commonly used
together and are not tightly integrated.

To mitigate these challenges, it is important to consider
framework integration when designing the pipeline. By choos-
ing frameworks that are well-integrated and commonly used

together, it can be easier to find debugging resources and
support. This can save time and effort which can be wasted
when trying to piece together frameworks that are not well-
suited to work together.

C. Automation

Setting up a distributed data processing pipeline involves
installing and configuring various frameworks on multiple
nodes, which can be a time-consuming and tedious process.
One way to streamline this process is to use Docker containers
to containerize the different frameworks, and use technologies
such as Kubernetes to orchestrate those containers across mul-
tiple clusters. However, this approach introduces an additional
layer of complexity when initially setting up the pipeline,
which can increase the time needed for debugging if issues
arise with containerization or container orchestration.

To address this challenge, we took a different approach.
Instead of manually installing and configuring the frameworks
on each node, we developed scripts that can be used to
automatically carry out these tasks. This allowed us to easily
deploy the frameworks on new nodes by simply running the
scripts, rather than manually repeating the setup process each
time. This solution not only saved time but also helped to
ensure consistency across the different nodes in the cluster.
By automating the deployment process, we were able to
streamline the setup of our distributed data processing pipeline
and reduce the time needed for debugging.

V. VALIDATION

For this project, our goal was to design and implement a
data processing pipeline for 5G networks, which included the
deployment of the pipeline in a local cluster. To demonstrate
the successful implementation of the pipeline, we used a
variety of methods to showcase the functioning of the differ-
ent components. These include printing out logs, observing
dashboards, and successfully making visualizations. These
methods allowed us to validate that the pipeline was working
as intended and provided a clear understanding of the various
stages of data processing and the tools and technologies being
utilized. The following subsections show the results of the
aforementioned validations.

A. In-lab 5G testbed

To validate the big data processing pipeline, we set up a
5G testbed at the Hardware Lab in the Davis Centre. While
the details of this testbed are beyond the scope of this report,
it provides a valuable platform for testing and validating the
data processing pipeline.

To carry out the subsequent validation tests described in
this report, we installed Metricbeat on each of the servers
hosting the 5G testbed. This software publishes the server’s
metrics to the appropriate Kafka queue at specific intervals,
providing a steady stream of data that we can use to test and
validate the data processing pipeline. Unless otherwise noted,
we will be using this data for the validation tests described in
the following sections.



Fig. 5: Kafka Topics

Fig. 6: Logstash logs

B. Data Ingestion

As described in section III, we use Kafka and Logstash for
the data ingestion stage of our pipeline. The data is being
published by Metricbeat, so we create a Kafka topic called
”metricbeat”. This is illustrated in Fig. 5. Subsequently, we
configure the Metricbeat client to publish the data to this
topic at 1-second intervals. Once the raw, unstructured data
is received at the ”metricbeat” topic, Logstash is able to
parse and clean it. The corresponding logs are shown in
Fig. 6. Afterward, Logstash routes the cleaned data to both
Elasticsearch and HDFS for storage and further processing.

C. Data Storage

We validate HDFS by copying 1TB of data to the distributed
storage and verifying the metrics shown in the dashboard.
Fig. 7 shows the dashboard for HDFS in our data processing
pipeline. We can see that it is using two nodes for distributed
data storage, with each node having a storage capacity of
nearly 1TB. However, there is additional data stored on these
nodes, resulting in a total configured storage of 1.76TB. Addi-
tionally, we can see that our data occupies half of the storage
space. It is also worth noting that even though the underlying
storage is distributed across two nodes, HDFS provides an
abstraction of a single storage device, making it easy to interact
with the storage using simple commands such as ”ls”, ”mv”

or ”cp”. This also simplifies the process of routing data from
Kafka to HDFS using Logstash, as we only need to provide the
HDFS master node address and HDFS handles the distributed
storage automatically. This allows us to take advantage of the
scalability and reliability of distributed storage without the
added complexity of managing it ourselves.

Since Elasticsearch is tightly integrated with Kibana, we
can utilize Kibana to monitor the Elasticsearch database. As
previously mentioned, Elasticsearch stores related documents
together as indexes, and for our pipeline, we have configured
each day’s data as a separate index. This means that we can
view the documents collected using Metricbeat on different
days as different indexes in Elasticsearch. This can be observed
in the dashboard shown in Fig. 8. This enables us to easily
track and monitor the data being stored in Elasticsearch, as
well as identify any potential issues or abnormalities in the
data. Additional validation for the successful implementation
of Elasticsearch can be obtained by exploring the stored data
and viewing the features present in the documents being
published by Metricbeat. These are shown in Fig. 9. We can
see that the features include ”os”, ”kernel” among others,
which are as expected.
D. Data Processing

For data processing, we use Spark in our pipeline. In order
to validate the capabilities of Spark, we focused on two main



Fig. 7: HDFS dashboard

Fig. 8: Elasticsearch indexes

cases: the complexity of operations that can be performed
using Spark, and the performance improvements that can be
achieved by using Spark compared to traditional methods.

To demonstrate the first case, we set out to calculate the
rolling average over the stored data, which involves read-
ing the files, organizing the rows based on ingestion time,
and then calculating the moving average. Fig. 10 shows the
MapReduce-based code used to accomplish this task, as well
as the results obtained. By manually calculating the moving
average over the values shown, we can confirm that the
calculations are correct and that Spark is capable of handling
complex operations such as moving (rolling) averages.

To evaluate the performance improvements that can be
achieved using Spark, we compared the time required to count

the rows in a file, stored in HDFS, with 3M rows when using
Spark versus a traditional Python program. Figure Fig. 11
shows the code used for both methods and the results obtained.
We can see that Spark was able to complete the task in 107
seconds, while the Python program was still running after 44
minutes and had only counted 1/7th of the rows. These tests
validate the proper integration of Spark with HDFS.

E. Data Visualization

The final component of the data processing pipeline that
needs to be validated is data visualization. To facilitate this,
we create a dashboard in Kibana to visualize the average of the
system load metric being published by the Metricbeat client.
This is illustrated in Figure Fig. 12. By visually inspecting
the dashboard, we are able to confirm that the data is being
visualized in real time.

VI. CONCLUSION AND FUTURE WORK

In conclusion, modern 5G networks generate vast amounts
of data, and efficient management of these networks requires
the ability to handle and process this data effectively. To
address this need, we have designed and implemented a big
data processing pipeline for 5G mobile networks. This pipeline
consists of four main components: data ingestion, data storage,
data processing, and data visualization. These components are
made up of various technologies, including Kafka, Logstash,
Elasticsearch, HDFS, Kibana, and Spark, which work together



Fig. 9: Metricbeat index mappings

to collect, store, process, and visualize data from 5G networks.
We have validated the successful operation of the pipeline
through the use of various validation tests, demonstrating
its effectiveness in handling and analyzing data from 5G
networks.

The design and practical implementation of a big data
processing pipeline is a complex and time-consuming
task, and our work on this project has been a significant
undertaking. However, we have now reached a stage where we
have validated the successful implementation of the pipeline,
and we can move forward to design more rigorous analytical
tests to evaluate its performance. This will allow us to gain
a deeper understanding of the capabilities and limitations of
the pipeline and identify any areas for improvement. Another
important improvement that is needed is the containerization
of the pipeline, which will enable us to manage and scale it
more easily.

ACKNOWLEDGEMENT

Although this report has been written by me in its entirety,
the design and implementation of the data processing pipeline
have been a combined effort by me and my colleague Arash

Fig. 10: Spark Rolling Average Code and Results

Fig. 11: Spark vs. Python row counting time

Moayyedi, working at the Hardware Lab. My contribution to
the pipeline was the deployment of Kafka, HDFS, and Spark,
and their proper integration with the rest of the pipeline. In
addition to Spark’s integration, I also learned the MapReduce
programming model and used PySpark to implement the
validation tests related to Spark.



Fig. 12: Kibana Data Visualization

REFERENCES

[1] R. Boutaba, N. Shahriar, M. A. Salahuddin, S. R. Chowdhury,
N. Saha, and A. James, “AI-driven closed-loop automation in 5G
and beyond mobile networks,” in ACM Workshop on Flexible
Networks Artificial Intelligence Supported Network Flexibility
and Agility (FlexNets), 2021, p. 1–6.

[2] N. Saha, A. James, N. Shahriar, R. Boutaba, and A. Saleh,
“Demonstrating Network Slice KPI Monitoring in a 5G Testbed,”
in NOMS 2022-2022 IEEE/IFIP Network Operations and Man-
agement Symposium, 2022, pp. 1–3.

[3] M. Sulaiman, A. Moayyedi, M. A. Salahuddin, R. Boutaba, and
A. Saleh, “Multi-Agent Deep Reinforcement Learning for Slicing
and Admission Control in 5G C-RAN,” in NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium,
2022, pp. 1–9.

[4] M. Sulaiman, A. Moayyedi, M. Ahmadi, M. A. Salahuddin,
R. Boutaba, and A. Saleh, “Coordinated Slicing and Admission
Control using Multi-Agent Deep Reinforcement Learning,” IEEE
Transactions on Network and Service Management, pp. 1–1,
2022.

[5] G. van Dongen and D. Van den Poel, “Evaluation of stream
processing frameworks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 8, pp. 1845–1858, 2020.

[6] F. Carcillo, A. Dal Pozzolo, Y.-A. Le Borgne, O. Caelen,
Y. Mazzer, and G. Bontempi, “Scarff: A scalable framework for
streaming credit card fraud detection with spark,” Information
Fusion, vol. 41, pp. 182–194, 2018.

[7] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin,

A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, “Apache
Spark: A Unified Engine for Big Data Processing,” Commun.
ACM, vol. 59, no. 11, p. 56–65, oct 2016. [Online]. Available:
https://doi.org/10.1145/2934664


