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RESEARCH PROBLEM ML-BASED VNF & SLICE MODELING RESOURCE ALLOCATION ALGORITHM
BACKGROUND VNF MODELING ALGORITHM
= 5G Network: Comprises Virtual Network Functions = Input/Output: Predicts the egress traffic feature = Lagrangian primal dual algorithm coupled
(VNFs) within the Radio Access Network (RAN), vector given input traffic trace (i.e., pcap) and VNF with Gradient descent
Transport, and Core configuration & resource allocation . Relaxed Lagrangian formulation:
= Network Slicing: Involves creating isolated, virtual = Dataset: Uses data from in-lab 5G testbed and partner
networks tailored to specific use-cases (e.g., eMBB network operator's real network for training VNF models L=71+ 4 (Q0Srcquirea = QOSpredictea)
slices tailored of VR/XR, URLLC slice for remote = Differentiability: Leverages reparameterization trick to = Outer loop: Updates Lagrangian variables
driving, telesurgery and mMTC for IOT applications) maintain VNF model differentiability (4) based on QoS constraint violation
= Slice QoS & SLA: Service Level Agreements (SLAS) = Composability: Allows stacking VNF models to form (i.€.; Q0S,equired = QO0Spredicted)
define the minimum Quality of Service (QoS) 5G end-to-end slice model = Inner loop: Utilizes gradient descent to
slices must receive minimize the relaxed Lagrangian, with
= Resource Allocation vs. QoS: The amount of gradients from the differentiable slice model
resources allocated to VNFs directly impacts the SLICE MODELING
slice's QoS = Construction: Composed using individual VNF models Algorithm 1 MicroOpt Algorithm
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= Real-Time Adaptation: Fast, efficient resource 14: return r
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. . . o] ff' oaf = Resource saving:
" ML-B_ased VNF & Slice M(_)dellng. Leveraging 14.60% and 20.74% improvement over previous
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P ) i . . T ey me ST ughat vbee =  Significantly faster resource scaling:
= Resource Allocation Algorithm: Using Lagraingian 2-3 orders of magnitude faster resource scaling
primal-dual algorithm coupled with gradient descent Fig: Ground truth vs. predicted throughput and delay compared to previous SOTA

for fast, near-optimal resource scaling under QoS for end-to-end slice model
constraints




